Concept Drift Detection for Imbalanced Stream Data
نویسندگان
چکیده
Common statistical prediction models often require and assume stationarity in the data. However, in many practical applications, changes in the relationship of the response and predictor variables are regularly observed over time, resulting in the deterioration of the predictive performance of these models. This paper presents Linear Four Rates (LFR), a framework for detecting these concept drifts and subsequently identifying the data points that belong to the new concept (for relearning the model). Unlike conventional concept drift detection approaches, LFR can be applied to both batch and stream data; is not limited by the distribution properties of the response variable (e.g., datasets with imbalanced labels); is independent of the underlying statistical-model; and uses user-specified parameters that are intuitively comprehensible. The performance of LFR is compared to benchmark approaches using both simulated and commonly used public datasets that span the gamut of concept drift types. The results show LFR significantly outperforms benchmark approaches in terms of recall, accuracy and delay in detection of concept drifts across datasets.
منابع مشابه
Learning Framework for Non-stationary and Imbalanced Data Stream
Abstract—Although learning on non-stationary data and imbalanced data have been extensively studied in the literature separately, however little work has been done to tackle the imbalanced issue on nonstationary data stream as the joint probability distribution between the data and classes changes with time and may results skewed class distribution. Especially in airlines delay detection, data ...
متن کاملConcept Drift Detection and Adaptation with Hierarchical Hypothesis Testing
In a streaming environment, there is often a need for statistical prediction models to detect and adapt to concept drifts (i.e., changes in the underlying relationship between the response and predictor data streams being modeled) so as to mitigate deteriorating predictive performance over time. Various concept drift detection approaches have been proposed in the past decades. However, they do ...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملPrequential AUC for Classifier Evaluation and Drift Detection in Evolving Data Streams
Detecting and adapting to concept drift makes learning data stream classifiers a difficult task. It becomes even more complex when the distribution of classes in the stream becomes imbalanced. Currently, proper assessment of classifiers for such data is still a challenge, as existing evaluation measures either do not take into account class imbalance or are unable to indicate class ratio change...
متن کاملConcept Drift Detection with Hierarchical Hypothesis Testing | Proceedings of the 2017 SIAM International Conference on Data Mining | Society for Industrial and Applied Mathematics
When using statistical models (such as a classifier) in a streaming environment, there is often a need to detect and adapt to concept drifts to mitigate any deterioration in the model’s predictive performance over time. Unfortunately, the ability of popular concept drift approaches in detecting these drifts in the relationship of the response and predictor variable is often dependent on the dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1504.01044 شماره
صفحات -
تاریخ انتشار 2015